Parallel attribute reduction in high-dimensional data: An efficient MapReduce strategy with fuzzy discernibility matrix
Source Title: Applied Soft Computing, Quartile: Q1, DOI Link
View abstract ⏷
The hybrid paradigm of fuzzy-rough set theory, which combines fuzzy and rough sets, has proven effective in attribute reduction for hybrid decision systems encompassing both numerical and categorical attributes. However, current parallel/distributed approaches are limited to handling datasets with either categorical or numerical attributes and often rely on fuzzy dependency measures. There exists little research on parallel/distributed attribute reduction for large-scale hybrid decision systems. The challenge of handling high-dimensional data in hybrid decision systems necessitates efficient distributed computing techniques to ensure scalability and performance. MapReduce, a widely used framework for distributed processing, provides an organized approach to handling large-scale data. Despite its potential, there is a noticeable lack of attribute reduction techniques that leverage MapReduce's capabilities with a fuzzy discernibility matrix, which can significantly improve the efficiency of processing high-dimensional hybrid datasets. This paper introduces a vertically partitioned fuzzy discernibility matrix within the MapReduce computation model to address the high dimensionality of hybrid datasets. The proposed MapReduce strategy for attribute reduction minimizes data movement during the shuffle and sort phase, overcoming limitations present in existing approaches. Furthermore, the methods efficiency is enhanced by integrating a feature known as SAT-region removal, which removes matrix entries that satisfy the maximum satisfiability conditions during the attribute reduction process. Extensive experimental analysis validates the proposed method, demonstrating its superior performance compared to recent parallel/distributed methods in attribute reduction