Analysis of RNA-Protein Interaction Networks Using RNP-MaP
Book chapter, Methods in Molecular Biology, 2023, DOI Link
View abstract ⏷
RNA-protein interactions regulate a myriad of biological functions through formation of ribonucleoprotein complexes. These complexes may consist of one or more RNA-protein interaction network(s) providing additional layers of regulatory potential to the RNA. Moreover, since the protein-binding also regulates local and global structure of the RNA by structurally remodeling the latter, it is important to correlate RNA nucleotide flexibility with the site of protein-binding. We have discussed methods for chemical probing of structure of the RNA in the protein-free and protein-bound states in the preceding chapters. In this chapter, we describe a ribonucleoprotein mutational profiling (RNP-MaP) method for probing RNA-protein interaction networks.
SHAPE to Probe RNA Structure and RNA–Protein Interactions In Vitro
Book chapter, Methods in Molecular Biology, 2023, DOI Link
View abstract ⏷
Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) is used to distinguish between the levels of flexibility of nucleotides regulated by base pairing or protein binding. In this method, a reagent reacts with the 2′ hydroxyl group to form an adduct, which is then detected by reverse transcription reaction. The number of RNA molecules with an adduct at a specific nucleotide position indicates the SHAPE reactivity of that nucleotide. Here, we describe the method for probing the structure of an RNA in a protein-free or a protein-bound state by in vitro SHAPE.
Chemical Probing of RNA Structure In Vivo Using SHAPE-MaP and DMS-MaP
Book chapter, Methods in Molecular Biology, 2023, DOI Link
View abstract ⏷
The functional roles of RNAs are often regulated by their structure. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE) and dimethyl sulfate (DMS) base reactivity can be employed to investigate the flexibility of nucleotides and correlate it to the constraints imparted by base-pairing and/or protein-binding. In vivo, a multitude of proteins could bind an RNA molecule, regulating its structure and function. Hence, to obtain a more comprehensive view of the RNA structure–function relationship in vivo, it may be required to characterize both the RNA structure and the RNA-protein interaction network. In this chapter, we describe methods for characterizing the in vivo nucleotide flexibility of RNA in cells by SHAPE-MaP (SHAPE by Mutational Profiling) and DMS-MaP. In another chapter, we will discuss the characterization of RNA-protein interaction network by RNP-MaP.
The DNA glycosylase NEIL2 is protective during SARS-CoV-2 infection
Tapryal N., Chakraborty A., Saha K., Islam A., Pan L., Hosoki K., Sayed I.M., Duran J.M., Alcantara J., Castillo V., Tindle C., Sarker A.H., Wakamiya M., Cardenas V.J., Sharma G., Crotty Alexander L.E., Sur S., Sahoo D., Ghosh G., Das S., Ghosh P., Boldogh I., Hazra T.K.
Article, Nature Communications, 2023, DOI Link
View abstract ⏷
SARS-CoV-2 infection-induced aggravation of host innate immune response not only causes tissue damage and multiorgan failure in COVID-19 patients but also induces host genome damage and activates DNA damage response pathways. To test whether the compromised DNA repair capacity of individuals modulates the severity of COVID-19 infection, we analyze DNA repair gene expression in publicly available patient datasets and observe a lower level of the DNA glycosylase NEIL2 in the lungs of severely infected COVID-19 patients. This observation of lower NEIL2 levels is further validated in infected patients, hamsters and ACE2 receptor-expressing human A549 (A549-ACE2) cells. Furthermore, delivery of recombinant NEIL2 in A549-ACE2 cells shows decreased expression of proinflammatory genes and viral E-gene, as well as lowers the yield of viral progeny compared to mock-treated cells. Mechanistically, NEIL2 cooperatively binds to the 5’-UTR of SARS-CoV-2 genomic RNA to block viral protein synthesis. Collectively, these data strongly suggest that the maintenance of basal NEIL2 levels is critical for the protective response of hosts to viral infection and disease.
Cooperative engagement and subsequent selective displacement of SR proteins define the pre-mRNA 3D structural scaffold for early spliceosome assembly
Article, Nucleic Acids Research, 2022, DOI Link
View abstract ⏷
We recently reported that serine-Arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner. Excess U1 snRNP selectively displaces some of the SR protein molecules from the pre-mRNA generating the substrate for splice signal-specific, sequential recognition by U1 snRNP, U2AF65 and U2AF35. Our work thus identifies a novel function of U1 snRNP in mammalian splicing substrate definition, explains the need for excess U1 snRNP compared to other U snRNPs in vivo, demonstrates how excess SR proteins could inhibit splicing, and provides a conceptual basis to examine if this mechanism of splicing substrate definition is employed by other splicing regulatory proteins.
Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code
Saha K., Fernandez M.M., Biswas T., Joseph S., Ghosh G.
Article, Nucleic Acids Research, 2021, DOI Link
View abstract ⏷
The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML- A model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5′ and 3′ splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.
Structural disruption of exonic stem–loops immediately upstream of the intron regulates mammalian splicing
Saha K., England W., Fernandez M.M., Biswas T., Spitale R.C., Ghosh G.
Article, Nucleic Acids Research, 2020, DOI Link
View abstract ⏷
Recognition of highly degenerate mammalian splice sites by the core spliceosomal machinery is regulated by several protein factors that predominantly bind exonic splicing motifs. These are postulated to be single-stranded in order to be functional, yet knowledge of secondary structural features that regulate the exposure of exonic splicing motifs across the transcriptome is not currently available. Using transcriptome-wide RNA structural information we show that retained introns in mouse are commonly flanked by a short (<70 nucleotide), highly base-paired segment upstream and a predominantly single-stranded exonic segment downstream. Splicing assays with select pre-mRNA substrates demonstrate that loops immediately upstream of the introns contain pre-mRNA-specific splicing enhancers, the substitution or hybridization of which impedes splicing. Additionally, the exonic segments flanking the retained introns appeared to be more enriched in a previously identified set of hexameric exonic splicing enhancer (ESE) sequences compared to their spliced counterparts, suggesting that base-pairing in the exonic segments upstream of retained introns could be a means for occlusion of ESEs. The upstream exonic loops of the test substrate promoted recruitment of splicing factors and consequent pre-mRNA structural remodeling, leading up to assembly of the early spliceosome. These results suggest that disruption of exonic stem–loop structures immediately upstream (but not downstream) of the introns regulate alternative splicing events, likely through modulating accessibility of splicing factors.
Characterization of the evolutionarily conserved iron-sulfur cluster of sirohydrochlorin ferrochelatase from Arabidopsis thaliana
Saha K., Webb M.E., Rigby S.E.J., Leech H.K., Warren M.J., Smith A.G.
Article, Biochemical Journal, 2012, DOI Link
View abstract ⏷
Sirohaem is a cofactor of nitrite and sulfite reductases, essential for assimilation of nitrogen and sulfur. Sirohaem is synthesized from the central tetrapyrrole intermediate uroporphyrinogen III by methylation, oxidation and ferrochelation reactions. In Arabidopsis thaliana, the ferrochelation step is catalysed by sirohydrochlorin ferrochelatase (SirB), which, unlike its counterparts in bacteria, contains an [Fe-S] cluster. We determined the cluster to be a [4Fe-4S] type, which quickly oxidizes to a [2Fe-2S] form in the presence of oxygen. We also identified the cluster ligands as four conserved cysteine residues located at the C-terminus. A fifth conserved cysteine residue, Cys 135, is not involved in ligating the cluster directly, but influences the oxygen-sensitivity of the [4Fe-4S] form, and possibly the affinity for the substrate metal. Substitution mutants of the enzyme lacking the Fe-S cluster or Cys135 retain the same specific activity in vitro and dimeric quaternary structure as the wild-type enzyme. The mutant variants also rescue a defined Escherichia coli sirohaem-deficient mutant. However, the mutant enzymes cannot complement Arabidopsis plants with a null AtSirB mutation, which exhibits post-germination arrest. These observations suggest an important physiological role for the Fe-S cluster in planta, highlighting the close association of iron, sulfur and tetrapyrrole metabolism. © The Authors Journal compilation © 2012 Biochemical Society.
Identification and characterization of the Arabidopsis gene encoding the tetrapyrrole biosynthesis enzyme uroporphyrinogen III synthase
Tan F.-C., Cheng Q., Saha K., Heinemann I.U., Jahn M., Jahn D., Smith A.G.
Article, Biochemical Journal, 2008, DOI Link
View abstract ⏷
UROS (uroporphyrinogen III synthase; EC 4.2.1.75) is the enzyme responsible for the formation of uroporphyrinogen III, the precursor of all cellular tetrapyrroles including haem, chlorophyll and bilins. Although UROS genes have been cloned from many organisms, the level of sequence conservation between them is low, making sequence similarity searches difficult. As an alternative approach to identify the UROS gene from plants, we used functional complementation, since this does not require conservation of primary sequence. A mutant of Saccharomyces cerevisiae was constructed in which the HEM4 gene encoding UROS was deleted. This mutant was transformed with an Arabidopsis thaliana cDNA library in a yeast expression vector and two colonies were obtained that could grow in the absence of haem. The rescuing plasmids encoded an ORF (open reading frame) of 321 amino acids which, when subcloned into an Escherichia coli expression vector, was able to complement an E. coli hemD mutant defective in UROS. Final proof that the ORF encoded UROS came from the fact that the recombinant protein expressed with an N-terminal histidine-tag was found to have UROS activity. Comparison of the sequence of AtUROS (A. thaliana UROS) with the human enzyme found that the seven invariant residues previously identified were conserved, including three shown to be important for enzyme activity. Furthermore, a structure-based homology search of the protein database with AtUROS identified the human crystal structure. AtUROS has an N-terminal extension compared with orthologues from other organisms, suggesting that this might act as a targeting sequence. The precursor protein of 34 kDa translated in vitro was imported into isolated chloroplasts and processed to the mature size of 29 kDa. Confocal microscopy of plant cells transiently expressing a fusion protein of AtUROS with GFP (green fluorescent protein) confirmed that AtUROS was targeted exclusively to chloroplasts in vivo. © The Authors.